ActiMaris® wound healing –
environmentally and Eco friendly

Literature

radio_button_unchecked

The ActiMaris® team always strives to keep track of the latest and most up-to-date scientific knowledge in the field of bilogy, medicine and physics, in relation to human health, worldwide to always be up to date.

Host-Microbe Protein Interactions during Bacterial Infection

Chem Biol. 2015 Nov 19;22(11):1521-1530.
Devin K. Schweppe, Christopher L Harding, Juan D. Chavez, Xia Wu, Elizabeth R. Ramage, Pradeep K Singh, Colin Manoil, James E. BruceSource »

Biophysics of biofilm infection

Pathog Dis. 2014 Apr;70(3):212-8.
Philip S. StewartSource »

Species-Independent Attraction to Biofilms through Electrical Signaling

Cell. 2017 Jan 12;168(1-2):200-209.e12.
Humphries J, Xiong L, Liu J, Prindle A, Yuan F, Arjes HA, Tsimring L, Süel GMSource »

Wound biofilms: lessons learned from oral biofilms

Wound Repair Regen. 2013 May; 21(3): 352–362.
Kimberly A. Mancl, BS, Robert S. Kirsner, MD, PhD, and Dragana Ajdic, PhDSource »

Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus

Pathogens and Disease, Volume 70, Issue 3, April 2014, Pages 231–239
Pooi Y. Chung, Yien S. TohSource »

Critical review on biofilm methods

Crit Rev Microbiol. 2017 May;43(3):313-351
Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C.Source »

pH Influence on Antibacterial Efficacy of Common Antiseptic Substances

Skin Pharmacol Physiol 2015;28:147-158
Wiegand C., Abel M., Ruth P., Elsner P., Hipler U.-C. Source »

Temporal dynamics of relative abundances and bacterial succession in chronic wound communities

Wound Repair and Regeneration 25(4) · June 2017
Craig D. Tipton, BS; Marilyn E. Mathew, BS; Richard A. Wolcott, PhD; Randall D. Wolcott, MD; Tigga Kingston, PhD; Caleb D. Phillips, PhDSource »

Hyperbaric oxygen and wound healing

Indian Journal of Plastic Surgery, Volume 45, Issue 2, Pages 316 – 324
Bhutani S. and Vishwanath G. (2012)Source »

Role of oxygen in wound healing

Journal of Wound Care, Volume 17, Issue 9, Pages 399 – 402
Bishop A. (2008)Source »

Topical wound oxygen therapy in the treatment of severe diabetic foot ulcers: A prospective controlled study

Ostomy Wound Management, Volume 56, Issue 6, Pages 24 – 31harris
Blackman E. et al. (2010)Source »

The role of oxygen-associated therapies for the healing of chronic wounds, particularly in patients with diabetes

Journal of the European Academy of Dermatology and Venereology, Volume 27, Issue 4, Pages 411 – 418
Brimson C.H. an Nigam Y. (2013)Source »

Reactive Oxygen Species (ROS) - a family of fate deciding molecules pivotal in constructive inflammation and wound healing

European Cells and Materials, Volume 24, Pages 249 – 265
Bryan N. et al. (2012)Source »

Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons

Molecular and Cellular Neurosciences, Volume 67, Pages 116 – 125
handrasekaran V. et al. (2015)Source »

A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury

Cell Metabolism, Volume 23, Issue 2, Pages 254 – 263
Chouchani E.T. et al. (2016)Source »

Cross-talk between redox regulation and the ubiquitin-proteasome system in mammalian cell differentiation

Biochimica et Biophysica Acta (BBA), Volume 1850, Issue 8, Pages 1607 – 1621
Ye Z.W. et al. (2015)Source »

Topical oxygen wound therapies for chronic wounds: a review

Journal of Wound Care, Volume 24, No. 2
Dissemond J. et al. (2015)Source »

A multi-centre clinical evaluation of reactive oxygen topical wound gel in 114 wounds

Published Online
Dryden M. et al. (2016)Source »

Oxygen in wound healing: nutrient, antibiotic, signaling molecule, and therapeutic agent

Clinics in Plastic Surgery, Volume 39, Issue 3, Pages 293 – 310
Eisenbud D.E. (2012)Source »

UHMS Position Statement: Topical Oxygen for Chronic Wounds

Undersea and Hyperbaric Medical Society, Volume 32, No. 3, Pages 157 -168
Feldmeier J.J. et al. (2005)Source »

Endogenous electric fields as guiding cue for cell migration

Frontiers in Physiology, Volume 6, Article 143
Funk R.H.W. (2015)Source »

Evidence-based recommendations for the use of topical oxygen therapy in the treatment of lower extremity wounds

The International Journal of Lower Extremity Wounds, Volume 8, No. 2, Pages 105 – 111
Gordillo G.M. et Sen C.K. (2009)Source »

Effects of physiological electric fields on migration of human dermal fibroblasts

The Journal of Investigative Dermatology, Volume 130, Issue 9, Pages 2320 – 2327
Guo A. et al. (2010)Source »

Supplementary oxygen and wound healing in vascular surgery: Too simple to be true?

ANZ Journal of Surgery, Volume 77, Issue 6, Page 407
Harris J.P. (2007)Source »

Wundheilung - Therapeutische Interventionen

Der Hautarzt, Volume 61, Issue 7, Pages 611 – 628
Heinlin J. et al. (2010)Source »

Slowing the Onset of Hypoxia Increases Colony Forming Efficiency of Connective Tissue Progenitor Cells In Vitro

Journal of Tissue Engineering and Regenerative Medicine, Volume 2
Heylman C.M. et al. (2013)Source »

Wounds: An Overview of the Role of Oxygen

Antioxidants & Redox Signaling, Volume 9, No. 8, Pages 1183 – 1192
Hopf H.W. et Rollins M.D. (2007)Source »

Oxygen and wound care: A review of current therapeutic modalities and future direction

Wound Repair and Regeneration, Volume 21, Pages 503 – 511
Howard M.A. et al. (2013)Source »

Give me ROS or give me death

Pressure, Volume 30, Pages 10 – 11
Hunt T.K. et al. (2001)Source »

Hyperbaric Oxygen and Wounds: A tale of two enzymes

EWMA Journal, Volume 10, No. 2, Pages 7 – 9
Hunt T.K. (2010)Source »

Cutaneous Na+ storage strengthens the antimicrobial barrier function of the skin and boosts macrophage-driven host defense

Cell Metabolism, Volume 21, Issue 3, Pages 493 – 501
Jantsch J. et al. (2015)Source »

DC electrical stimulation for chronic wound healing enhancement. Part 1. Clinical study and determination of electrical field distribution in the numerical wound model

Bioelectrochemistry and Bioenergetics, Volume 43, Pages 265 – 270
Karba R. et al. (1997)Source »

Dermal wound healing properties of redox-active grape seed proanthocyanidins

Free Radical Biology & Medicine, Volume 33, No. 8, Pages 1089 – 1096
Khanna S. et al. (2002):Source »

The cell biology of regeneration

The Journal of Cell Biology, Volume 196, No. 5, Pages 553 – 562
King R.S. et Newmark P.A. (2012)Source »

New insights into oxygen therapy for wound healing

Wounds, Volume 22, Issue 12, Pages 294 – 300
Ladizinsky D. et Roe D. (2010)Source »

Ultra-Low Microcurrent Therapy: A Novel Approach for Treatment of Chronic Resistant Wounds

Advances in Therapy, Volume 24, No. 6
Lee B.Y. et al. (2007)Source »

Einfluss von hyperbarem Sauerstoff (HBO) auf die Wundheilung

Trauma und Berufskrankheit, Volume 6, Issue 1, Pages 16-20
Muth C.M. and Mutschler W. (2004)Source »

Microfluidic Wound Bandage: Localized Oxygen Modulation of Collagen Maturation

Wound Repair and Regeneration, Volume 17, No. 1, Pages 1 – 18
Sen C.K. (2009)Source »

Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment

Antioxidants & Redox Signaling, Volume 22, Issue 7, Pages 572 – 586
Weidinger A. et al. (2015)Source »

Electrical dimensions in cell science

Journal of Cell Science, Volume 122, Pages 4267 – 4276
McCaig C.D. et al. (2009)Source »

Extracellular electrical fields direct wound healing and regeneration

The Biological Bulletin, Volume 221, No. 1, Pages 79 – 92
Messerli M.A. et Graham D.M. (2011)Source »

Hypertonic saline nasal irrigation and gargling should be considered as a treatment option for COVID-19

Journal of Global Health 2020 Jun; 10(1): 010332.
Sandeep Ramalingam, Catriona Graham, Jenny Dove, Lynn Morrice and Aziz SheikhSource »

Eradication of MRSA skull base osteitis by combined treatment with antibiotics and sinonasal irrigation with sodium hypochlorite

European Archives of Oto-Rhino-Laryngology volume 273, pages1951–1956 (2016)
I. Küster, A. Kramer, T. Bremert, S. Langner, W. Hosemann & Achim G. BeuleSource »

Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model

Clin Exp Metastasis. 1999 Jul;17(5):397-407.
S D Webb, J A Sherratt, R G FishSource »

Biofilm formation mechanisms and targets for developing antibiofilm agents

Future Med Chem. 2015;7(4):493-512.
Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HOSource »

Beneficial and deleterious bacterial–host interactions in chronic wound pathophysiology

Dovepress, 2 April 2015 Volume 2015:2 Pages 53—62
Chase Watters, Tony T Yuan, Kendra P RumbaughSource »

Environmental factors that shape biofilm formation

Biosci Biotechnol Biochem. 2016;80(1):7-12.
Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura NSource »

Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action

Virulence. 2018; 9(1): 522–554
Ranita Roy, Monalisa Tiwari, Gianfranco Donelli & Vishvanath TiwariSource »

The Cutaneous Microbiome and Wounds: New Molecular Targets to Promote Wound Healing

International Journal of Molecular Sciences 2018, 19(9), 2699
Taylor R Johnson, Belinda I. Gómez, Matthew K McIntyre, Michael A. Dubick, Robert J Christy, Susannah E Nicholson, David M BurmeisterSource »

Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases

BioMed Research International Volume 2019, Article ID 2015978, 15 pages
Qian Jiang, Jiashun Chen, Chengbo Yang, Yulong Yin, and Kang YaoSource »

Evaluation of the efficacy of Nawalution woundcare® solution used against various microorganisms.

Biomedical Research (2015) Volume 26, Issue 1
Keramettin Yanik, Kemal Bilgin, Adil Karadag, Nevzat Ünal, Hakan Odabaşı, Hamza Kadı, Şaban Esen, Murat GünaydınSource »

Temporal stability in chronic wound microbiota is associated with poor healing

PMC, J Invest Dermatol. 2017 Jan; 137(1): 237–244.
J Invest Dermatol (2017)Source »

Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms

SCIENTIFIC REPORTS, Received 13 April 2018, Accepted 07 January 2019, Published 25 February 2019
Kiamco, M.M., Zmuda, H.M., Mohamed, A. et al. Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms. Sci Rep 9, 2683 (2019)Source »

Directed oxygen gradients initiate a robust early remodeling response in engineered vascular grafts

Tissue Engineering Part A, Volume 19, Issue 17 – 18
Moore M.C. et al. (2013)Source »

Topical Oxygen for Chronic Wounds: A Pro/Con Debate

Journal of the American College of Clinical Wound Specialists, Volume 5, Issue 3, Pages 61-65

Mutluoglu M. et al. (2013)Source »

Oxidative Shielding or Oxidative Stress?

The Journal of Pharmacology, Volume 342, No. 3, Pages 608 – 618
Naviaux R.K. (2012)Source »

Physiologic Effects of Hyperbaric Oxygen on Wound Healing Processes

Handbook on Hyperbaric Medicine, Pages 135 – 145
Niinikoski J. (2005)Source »

Singlet oxygen: there is still something new under the sun, and it is better than ever

Photochemical & Photobiological Sciences, Volume 9, Pages 1543 – 1560
Ogilby P.R. (2010)Source »

New insights into redox regulation of stem cell self-renewal and differentiation

Biochimica et Biophysica Acta (BBA), Volume 1850, Issue 8, Pages 1518 – 1526
Ren F. et al. (2015)Source »

The Role of Oxygen in Wound Healing: A Review of the Literature

Dermatologic Surgery, Volume 34, Issue 9, Pages 1159 – 1169
Rodriguez P.G. et al. (2008)Source »

Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation

PLOS One, Volume 8, No. 8
Rouabhia M. et al. (2013)Source »

Hyperbaric oxygen therapy heals diabetic wounds

Apollo Medicine, Volume 11, Issue 1, Pages 27–31
Sahni T. et al. (2014)Source »

Transdermal sustained-delivery oxygen improves epithelial healing in a rabbit ear wound model

Archives of Surgery Journal, Volume 140, No. 10, Pages 998-1004
Said H.K. et al. (2005)Source »

Influence of Oxygen on Wound Healing Dynamics: Assessment in A Novel Wound Mouse Model under a Variable Oxygen Environment

PLOS ONE, Volume 7, Issue 11, Pages 1 – 7
Sano H. et al. (2012)Source »

Redox Control of the Cell Cycle in Health and Disease

Antioxidants & Redox Signaling, Volume 11, No. 12, Pages 2985 – 3011
Sarsour E.H. et al. (2009)Source »

Controlling Redox Status for Stem Cell Survival, Expansion, and Differentation

Oxidative Medicine and Cellular Longevity, Volume 2015, Article ID 105135, 14 pages
Sart S. et al. (2015)Source »

The antioxidants dilemma: are they potentially immunosuppressants and carcinogens?

Frontiers in Physiology, Volume 5, No. 245
Seifirad S. et al. (2014)Source »

Oxygen in acute and chronic wound healing

The British Journal of Dermatology, Volume 163, No. 2, Pages 257 – 268
Schreml S. et al. (2010)Source »

Oxygen, oxidants, and antioxidants in wound healing: an emerging paradigm

Annals of the New York Academy of Sciences, Volume 957, Pages 239 – 249
Sen C.K. (2002)Source »

The general case for redox control of wound repair

Wound Repair and Regeneration, Volume 17, No. 1, Pages 1 – 18
Sen C.K. (2009)Source »

Wound healing essentials: Let there be oxygen

Wound Repair and Regeneration, Volume 17, No. 1, Pages 1 – 18
Sen C.K. (2009)Source »

Does Topical Wound Oxygen (TWO2) Offer an Improved Outcome Over Conventional Compression Dressings (CCD) in the Management of Refractory Venous Ulcers (RVU)? A Parallel Observational Comparative Study

European Journal of Vascular & Endovascular Surgery, Volume 47, No. 1, Pages 30 – 37
Tawfick W.A. et Sultan S. (2012)Source »

Technical and clinical outcome of topical wound oxygen in comparison to conventional compression dressings in the management of refractory nonhealing venous ulcers

European Journal of Vascular & Endovascular Surgery, Volume 47, No. 1, Pages 30 – 37
Tawfick W.A. et Sultan S. (2012)Source »

The effect of hyperbaric oxygen treatment on the healing of burn wounds in nicotinized and nonnicotinized rats

Journal of Burn Care & Research, Volume 34, Issue 4, Pages 237 – 243
Tayyar S.C. et al. (2012)Source »

Electrical stimulation to accelerate wound healing

Diabetic Foot & Ankle, Volume 4, Pages 1 – 9
Thakral G. et al. (2013)Source »

Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy, and beyond

Federation of European Microbiological Societies, Volume 37, Pages 955 – 989
Vatansever F. et al. (2013)Source »

Oxygen and wound healing

Bulletin de l Academie Nationale de Medecine, Volume 189, Issue 5, Pages 853 – 864
Wattel F. et Mathieu D. (2005)Source »

Vicious Inducible Nitric Oxide Synthase-Mitochondrial Reactive Oxygen Species Cycle Accelerates Inflammatory Response and Causes Liver Injury in Rats

Antioxidants & Redox Signaling, Volume 22, Issue 7, Pages 572 – 586
Weidinger A. et al. (2015)Source »

Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

Biomolecules, Volume 5, Issue 2, Pages 472 – 484
Weidinger A. et Kozlov A.V. (2015)Source »

The Effect of Early Postoperative Physical Activity on Tissue Oxygen and Wound Healing

Biological Research For Nursing, Volume 6, No. 2, Pages 79 – 89
Whitney J.D. and Parkman S. (2004)Source »

An experimental study of the use of hyperbaric oxygen to reduce the side effects of radiation treatment for malignant disease

International Journal of Oral & Maxillofacial Surgery, Volume 36, Issue 6, Pages 533 – 540
Williamson R.A. (2007)Source »

Topical Oxygen and Hyperbaric Oxygen Therapy Use and Healing Rates in Diabetic Foot Ulcers

WOUNDS, Volume 26, Issue 5, Pages 39 – 47
Winfield B. (2014)Source »

Wound care: The role of advanced wound healing technologies

Journal of Vascular Surgery, Volume 52, No. 12S, Pages 59 – 66
Wu S.C. et al. (2010)Source »

Oxidative stress, redox regulation and diseases of cellular differentiation

Biochimica et Biophysica Acta (BBA), Volume 1850, Issue 8, Pages 1607 – 1621
Ye Z.W. et al. (2015)Source »

Influence of oxygen in wound healing

International Wound Journal, Volume 12, Issue 6, Pages 620 – 624
Yip W.L. (2014)Source »

When less in more: Hormesis against stress and disease

Microbial Cell, Volume 1, No. 5, Pages 150 – 153
Zimmermann A. et al. (2014)Source »

Electrical fields in wound healing – An overriding signal that directs cell migration

Seminars in Cell & Development Biology, Volume 20, Pages 674 – 682
Zhao M. (2009)Source »